CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>grote dbq cases</td>
</tr>
<tr>
<td>6</td>
<td>care of damaged builds</td>
</tr>
<tr>
<td>7</td>
<td>combined a replacement</td>
</tr>
<tr>
<td>8</td>
<td>trials for loss of revenue</td>
</tr>
<tr>
<td>9</td>
<td>training facilities</td>
</tr>
<tr>
<td>10</td>
<td>obtaining experience</td>
</tr>
<tr>
<td>11</td>
<td>installation and maintenance</td>
</tr>
<tr>
<td>12</td>
<td>operation and maintenance</td>
</tr>
<tr>
<td>13</td>
<td>switching on for the first time</td>
</tr>
<tr>
<td>14</td>
<td>demands of a typical end control equipment</td>
</tr>
<tr>
<td>15</td>
<td>this control equipment</td>
</tr>
<tr>
<td>16</td>
<td>the control principle of the Hewitt rectifier</td>
</tr>
<tr>
<td></td>
<td>installation on delivery</td>
</tr>
</tbody>
</table>

SMALL SINGLE BULB CUBICLES

Hewitt Rectifiers

INSTALLATION AND MAINTENANCE

INSTRUCTIONS
control will not be obtained.

To control equipment is incorrect, the required voltage should be maintained. If the phase rotation of a grid supply is incorrect, the supply leads will be incorrect when following the diagram. If the phase rotation of the supply is correct, the direction of the phase rotation may be observed by observing the direction of the phase rotation. If there is a 3-phase machine in the grid supply, it is important that the 3-phase machine also have to be attached to the transformer.

D.C. cables. A.C. supply to the transformer, and switch the output. In small equipment, the internal wiring is usually compact, and it is not necessary to do much work to position the cable. Before attaching the cable, the connections should be thoroughly examined and any connections or shorting devices removed. In operation, the equipment should be inspected to ensure that all leads are secure. The equipment should be cleared of any defects, and should have a degree of ventilation and should have a degree of ventilation.

INSTALLATION

at once.

The equipment should be examined and any transit damage reported immediately upon receipt. The complete equipment should be checked before.

On delivery.
the load current from the cathode of the bulb.

The load current flows through the grid and filament, and the grid current flows through the anode, which is connected to the cathode by a filament wire. The filament wire is simultaneously operated by the filament current.

For some types of service, the grid coil can also be used as the grid and cathode of the transformer.

The cathode and grid are used to control the output of the transformer. When the cathode is operated by the grid, its output is limited to a certain value and the grid can be varied at will to vary the output value of the transformer.

When the transformer is connected to a different source, it can be used as a different transformer circuit.

Stage 1: The transformer gives an open-circuit output.

Stage 2: The transformer gives an output current.

Stage 3: The transformer gives an output voltage.

Stage 4: The transformer gives an output voltage and is connected to the load.

Stage 5: The transformer gives an output voltage and is connected to the load.

Stage 6: The transformer gives an output voltage and is connected to the load.

Stage 7: The transformer gives an output voltage and is connected to the load.

Stage 8: The transformer gives an output voltage and is connected to the load.

Stage 9: The transformer gives an output voltage and is connected to the load.

Stage 10: The transformer gives an output voltage and is connected to the load.

Stage 11: The transformer gives an output voltage and is connected to the load.

Stage 12: The transformer gives an output voltage and is connected to the load.

Stage 13: The transformer gives an output voltage and is connected to the load.

Stage 14: The transformer gives an output voltage and is connected to the load.

Stage 15: The transformer gives an output voltage and is connected to the load.

Stage 16: The transformer gives an output voltage and is connected to the load.

Stage 17: The transformer gives an output voltage and is connected to the load.

Stage 18: The transformer gives an output voltage and is connected to the load.

Stage 19: The transformer gives an output voltage and is connected to the load.

Stage 20: The transformer gives an output voltage and is connected to the load.
Fig. 13. Diagram of connections for a 3-phase rectifier.

Fig. 14. Diagram of a grid-controlled 3-phase rectifier.
GRID CONTROL EQUIPMENT

D.C. control is important in applications where the operator needs to have access and control over the transformer and associated equipment. A good design is a well-coordinated control system that provides a simple and effective method for controlling the transformer and associated equipment. The control system should be designed to allow for easy access and control over the transformer and associated equipment. A good design is also important in ensuring that the control system is able to provide the necessary protection and control for the transformer and associated equipment.
It is not possible to give a standard figure for insulation resistance, so many factors are involved. The insulation resistance should be obtained after the transformer has been protected from the effects of its own internal overloads and has been operated under normal conditions for some time since delivery. It is necessary to know the condition of the transformer and to have an understanding of the transformer's characteristics before making any conclusions about its condition.

Switching on for the first time

It is always advisable to switch on with the circuit open and then close the switch. Always make sure that the switch is closed before applying power to the transformer. This will prevent any possible damage to the transformer. Always check the transformer's ratings and load curves before applying power. Always have a trained technician present to monitor the transformer during the initial start-up. Always check the transformer's temperature and noise levels before applying power. Always have a trained technician present to monitor the transformer during the initial start-up. Always check the transformer's temperature and noise levels before applying power. Always have a trained technician present to monitor the transformer during the initial start-up. Always check the transformer's temperature and noise levels before applying power.
Operation and Maintenance

General

The receiving antenna should be removed from the unit and all components should be cleaned to maintain the unit in good working order. It is advisable to keep the unit clean and dry. The unit should be cleaned at least once a month and once a week during the rainy season to prevent rust and dirt. The unit should be kept in a cool and dry place when not in use.

Cleaning:

1. Remove all dirt and debris from the unit.
2. Use a soft, dry cloth to wipe the unit clean.
3. Use a vacuum cleaner to remove any remaining dust.
4. Do not use any harsh chemicals or solvents to clean the unit.

Maintenance:

1. Check the unit regularly for any signs of wear or damage.
2. Replace any damaged parts immediately.
3. Keep the unit free of moisture and avoid exposure to extreme temperatures.
4. Keep the unit out of direct sunlight and avoid exposure to rain.

In case of problems or issues with the unit, contact the manufacturer or a qualified technician for assistance.

Instructions (a) and (b) are not applicable.

The receiving antenna should be removed from the unit and all components should be cleaned to maintain the unit in good working order. It is advisable to keep the unit clean and dry. The unit should be cleaned at least once a month and once a week during the rainy season to prevent rust and dirt. The unit should be kept in a cool and dry place when not in use.

Cleaning:

1. Remove all dirt and debris from the unit.
2. Use a soft, dry cloth to wipe the unit clean.
3. Use a vacuum cleaner to remove any remaining dust.
4. Do not use any harsh chemicals or solvents to clean the unit.

Maintenance:

1. Check the unit regularly for any signs of wear or damage.
2. Replace any damaged parts immediately.
3. Keep the unit free of moisture and avoid exposure to extreme temperatures.
4. Keep the unit out of direct sunlight and avoid exposure to rain.

In case of problems or issues with the unit, contact the manufacturer or a qualified technician for assistance.

Instructions (a) and (b) are not applicable.
TRACING FAULTS

In the weather,

1. The operation and maintenance of the D.C. system should be governed to the

2. A good knowledge of the system and the operation of the equipment is necessary.

3. The equipment must be kept in good working order to ensure reliable operation.

4. The equipment should be checked regularly to ensure that it is functioning properly.

5. The equipment must be properly maintained to avoid malfunctions.

6. The equipment must be properly insulated to avoid electrocution.

7. The equipment must be properly grounded to avoid electrocution.

8. The equipment must be properly labeled to avoid electrocution.

9. The equipment must be properly operated to avoid electrocution.

10. The equipment must be properly repaired to avoid electrocution.

11. The equipment must be properly cleaned to avoid electrocution.

12. The equipment must be properly stored to avoid electrocution.

13. The equipment must be properly replaced to avoid electrocution.

14. The equipment must be properly disposed of to avoid electrocution.

15. The equipment must be properly secured to avoid electrocution.

16. The equipment must be properly installed to avoid electrocution.

17. The equipment must be properly used to avoid electrocution.

18. The equipment must be properly connected to avoid electrocution.

19. The equipment must be properly tested to avoid electrocution.

20. The equipment must be properly aligned to avoid electrocution.

OPERATING TEMPERATURE

Grounding the equipment is critical to ensure proper operation. The equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.

Tests have shown that the equipment must be properly grounded to avoid electrocution.
In the following example, the arcuate resistor is discovered. Proceed on the following:

Assuming that all of the phases of the A.C. power

The following example is discovered. Proceed on the following:

Assuming that all of the phases of the A.C. power

In the following example, the arcuate resistor is discovered. Proceed on the following:

Assuming that all of the phases of the A.C. power
empty bulb cases

in the event of tough travel

With complications, for insulation in great danger the

return.

If a full investigation fully shows suspicion on the

TESTING FOR LOSS OF VACUUM

mechanical damage to a cell.

except as a result of gross overloading, overheating, or

except to the extent of truckable loss. The

CARE OF DAMAGED BULBS

receive.

which will be found on the inside of the door of each

all connections given on the equipment rating plaque

to obtain a reproduction of any items, it might be

short notice

obtaining a replacement at

of the bulb.

are seen there can be no further damage is the condition

a battery or other source whichever of the receiver be

side.

should be given with no external load on the

(c) Current will not feed back into the receiver from

(b) Grid control equipment. Any receiver build

full vacuum in the bulb. If a full investigation fully shows suspicion on the