Installation of the Bulbs

The bulbs should be cleaned down if necessary, before proceeding to install. The work should be checked over and the equipment drawings supplied.

The external cable is in accordance with the surrounding equipment, and when in position, it will be necessary to remove and replace the outer sheath. A schematic diagram of the installation is shown on the drawing.

Lining up the Cubicles

The cubicles are always delivered and installed in individual cases as an integral unit. The company's own vehicles are used for delivery to site. All cubicles are supplied with an outer case to prevent damage during transit.

Assembling the cubicles is a straightforward process. After the outer case is removed, the cubicles are assembled and checked for correct alignment.
REMOVAL OF BULBS FROM CASES

It will be found easier if this part of the operation is performed by two men at adjacent sides of the crate (see Fig. 4). Mind the Seal-off! The seal-off, covered by a small black cap, is situated towards the end of the lower part of one main anode arm. Care should be taken not to strain the mercury at this point, particularly when turning the bulb in the upright position. Have the bulb clear of its harness and lying with the seal-off, turn it slowly into the upright position as shown in the photographs. The mercury must be prevented from pouring into the case, the minimum point of mercury will enter the anode arms.

To unpack a bulb, unscrew the wood screws on all four bottoms (see Fig. 2) and remove the lid (do not attempt to disassemble the case). Remove the four rubber bands on the outside. The bulb is carried in a specially sprung case provided with ventilator windows so that the contents may be clearly seen from the outside. The case is carried in a sprung and sprung position by means of four straps. To do this, slip the bulb clear of its harness by holding it under the bulb arms.

Mind the Seal-off! The seal-off, covered by a small black cap, is situated towards the end of the lower part of one main anode arm. Care should be taken not to strain the mercury at this point, particularly when turning the bulb in the upright position. Have the bulb clear of its harness and lying with the seal-off, turn it slowly into the upright position as shown in the photographs. The mercury must be prevented from pouring into the case, the minimum point of mercury will enter the anode arms.

Mind the Seal-off! The seal-off, covered by a small black cap, is situated towards the end of the lower part of one main anode arm. Care should be taken not to strain the mercury at this point, particularly when turning the bulb in the upright position. Have the bulb clear of its harness and lying with the seal-off, turn it slowly into the upright position as shown in the photographs. The mercury must be prevented from pouring into the case, the minimum point of mercury will enter the anode arms.
Point 7. Pasting the bulb

Cords are damaged, the shell can be damaged, the bulb can be damaged, and the switch may be damaged. It is recommended not to touch the bulb while it is being handled. If the bulb is damaged, it should be disposed of properly.

FIG. 6. Position of the bulb and the cradle.

The bulb should be seated on a pad that supports the bulb. The cradle should be assembled with the bulb in the correct position.

Connecting up:

1. Place the bulb in the cradle and seat it on the cradle.
2. Connect the leads of the bulb to the cradle.
3. Connect the leads of the bulb to the switch.
4. Ensure that all leads are secured properly.

Excessive handling can damage the bulb and void the warranty. The bulb should be handled carefully and stored in a cool, dry place. The bulb should be replaced when it is damaged or no longer works properly.

FIG. 6. Showing the bulb correctly placed in the cradle and the switch.
also to protect the bulb from possible damage.

When setting up for the first time, the front short connection is self-contained. The two connections are stripped on the lug; the cathode connection and a neon lamp are connected through the main and ground. The neon lamp should light up, indicating that the ground is correct. Connect the ground terminal and the neon lamp to the neon lamp, and then connect the leads from the ground connection to the neon lamp. If the neon lamp does not light up, it may be helpful to adjust the ground. It will be necessary to remove the detachable gable.

Fig. 4, a cable complete with bulb base.

To connect the main and secondary leads to the cable, connect the main and secondary terminals.

Mounting the Cradle on the Base

When all of the main and auxiliary connections to the cradle are correct, the cradle is ready for placing on the cradle base. The cradle base has been made and the stand has been attached.

Above it, when the bulb is correctly secured,
The General Principle of the Mercury vapour Rectifier

The early condenser of an electric circuit was that point of a battery or the current flowed from the positive pole of a battery or the circuit through the electrical conductor to the negative pole of the battery or the circuit. This point of the circuit is the condenser, which is the point of the circuit where the electricity is greatest. In the case of a battery, the condenser is the positive pole of the battery, and in the case of an electric circuit, the condenser is the positive pole of the circuit. The condenser is the point of the circuit where the electricity is greatest.
This circuit now occurs across the resistor.

Stage 1. The exciter transformer gives an open circuit to the exciter electrodes.

Stage 2. The exciter electrodes are now at ground potential.

Stage 3. The exciter electrodes are now at ground potential.

The assembly and maintenance circuits.

The assembly and maintenance circuits are designed to protect and maintain the exciter electrodes. These circuits are an integral part of the exciter transformer and are responsible for ensuring the proper functioning of the exciter electrodes. The assembly and maintenance circuits include components such as the exciter transformer, the exciter electrodes, and various protective devices. These circuits are designed to provide a safe and reliable power supply to the exciter electrodes, ensuring that they operate within their intended range. The assembly and maintenance circuits also include diagnostic tools and monitoring systems to detect any malfunctions or failures, allowing for timely maintenance and repairs. Overall, the assembly and maintenance circuits play a crucial role in the proper operation and longevity of the exciter electrodes.
N.B.—Type Wx relay differs from type W in that it has an additional pair of normally open contacts. These can be used to give a remote indication that a bulb has not struck up with the rest, or for control purposes.

The value of the current circulation in the exciter circuit is governed by the exciter choke, and this is correctly adjusted whilst in the Test Department. The load is mainly inductive and the energy consumption for the largest bulbs is only about 200 to 250 watts.

Page 14

Fig. 14. Diagram
of exciter control.

Page 15

Fig. 15. Main wiring diagram for a typical single bulb vehicle.
Should the rotation be incorrect it will most likely be
in the opposite direction.

In the detection of faults, if at certain speeds, appear to
interpose a diode, as in a diode, and slide the

Checking Phase Sequence When a Reactor

The choke is displayed when

The choke is displayed when

Checking Exciter Current. If running on the

Secondary Voltage.

If necessary to change to a lower impedance to increase

The transformer, usually the transformer is

The exciter voltage.

If it is low, then either the main

It would be advisable to check the voltage

If the coil is low and no current is present, it may be

If the exciter is not rotating, the exciter is not in the

The voltage across the windings should be

A point for inspection for the exciter is in case

Access possible if it is accessible to put the tips of the

The above checks can be made to ensure satisfactory operation

The front sheet of the card should be left off until

Switching on for the first time
Operating Temperature

Switching on Normally

The receiver operates most satisfactorily in an ambient temperature between 10° and 50°C (50-95°F).

Higher temperatures are permissible when an alternative power supply is provided on the power pack. Lower temperatures than those specified in the operating instructions may be acceptable down to 40°C (105°F) when heated with a heat source.

Higher temperatures, however, may result in increased noise and loss of clarity.

The receiver should be switched on before the D.C. power supply is turned on. This prevents any instabilities in the power supply.

If the power is turned on before the receiver is switched on, the indicator will fail to function.

In the case of a controlled rectifier, the first retarding coil of the transformer should be turned on before the receiver is switched on.

If the power is turned on before the receiver is switched on, the indicator will fail to function.
Where an equipment comprises a number of cubicles, facilities are usually provided for isolating any one of the cubicles without interrupting supply from the remainder. (Care must be taken to ensure that the remaining cubicles are not overloaded as a result of the reduction in capacity.)

Cathode Isolator Operation. This isolator is only a slow-breaking device and must not be withdrawn unless there is at least one other cubicle in parallel to take up the load. If there are no other cubicles in parallel, the cathode isolator is usually located in the centre of the anode fuse panel. The auxiliary circuits are rendered dead by withdrawing the cathode isolator. The anode fuse contacts may be withdrawn after which the six main anode fuse contacts are withdrawn.

Isolating a Cubicle. The cathode isolator is usually located in the middle of the anode fuse panel. If the auxiliary circuits are rendered dead by the isolator, the anode fuse contacts may be withdrawn after which the six main anode fuse contacts are withdrawn.

Restoring to Load. To put the cubicle back into service replace the exciter and fan fuses, upon which the cubicle will strike up and remain running on the exciter. The anode fuses are not inserted until the cathode isolator has been rendered inoperative for this cubicle. It should be remembered to attend this requirement at once upon restoring the cubicle to service. This is designed for operation at voltages of the order
TRACING FAULTS

[Text continues]
CARE OF DAMAGED BULBS

Further damage to the condition of the bulb, in the event the bulb is damaged, and any air gap there can be no damage to the bulb is possible to repair and it is required to be of this shade. It is required to be of the bulb, the damage to the bulb should be removed from this shade. The air gap should be removed from this shade.

TESTING FOR LOSS OF VACUUM

Usually accessible for this purpose is the bulb. The 3 phase auxiliary supply is in the usual way. The air gap is not accessible by the use of this shade. It is required to be of the bulb the damage to the bulb should be removed from this shade. The air gap should be removed from this shade.
Tel: 01-729 7299

 Tâmilton Electric Walton-on-Thames
 Survey England

 Hackbridge and Hertford Electric Co. Ltd.

 Issued by

 The Electric Receipts

 NOTS

 The bulb cases are supplied on loan and should be
 with equipment for installation in the British Isles.

 bulb for repair.

 should be returned in case it is necessary to return a
 the bulb case need not be returned, but one or two
 Where components are supplied for overseas service

 EMPTY BULB CASES

 such assistance. (See Fig. 5).
 or even two) at the other end to lose control without
 that would allow either cause a sudden operation
 mercury runs to this end of the bulb the sudden
 the condenser chamber, As the
 Note.—In inventing a large bulb it is imperative that an
 in the event of rough travelling.

 In transport purposes all of the mercury must be in the